This is a review text file submitted electronically to MR.
Reviewer: Konstantopoulos, Takis
Reviewer number: 68397
Address:
School of Mathematical \& Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS
SCOTLAND
T.Konstantopoulos@hw.ac.uk,takis@ma.hw.ac.uk

Author: Privault, Nicolas
Short title: Moment identities for Poisson-Skorohod integrals and application to measure invariance.
MR Number: 2554579
Primary classification: 60G55
Secondary classification(s):

Review text:

Let $(X, \sigma),(Y, \mu)$ be two measure spaces. Consider a Poisson process on X with mean measure σ. For a function $u(\omega, x)$ of the sample configuration ω of the process and the point $x \in X$, the Skorohod integral operator maps u into the real number

$$
\delta_{\sigma}(u):=\int_{X} u(\omega \backslash\{t\}, t)(\omega(d t)-\sigma(d t))
$$

where $\omega \backslash\{t\}$ is the configuration obtained from ω by removing the point t if the latter belongs to ω. Let R be a random isometry between the space of p-integrable functions on X and p-integral functions of Y. This paper is concerned with an expression for the moments of $\delta_{\sigma}(R h)$ for appropriate functions h. This expression is used for the short proof of a sufficient condition for the preservation of the Poisson property under random transformations. Specifically, let $\tau(\omega, \cdot)$ be a map from X into Y such that, for each ω, the image of σ under this map is μ. We apply this map to the atoms $\left(x_{i}(\omega)\right)$ of a point process ω on X to obtain a point process with atoms $\left(\tau\left(\omega, x_{i}(\omega)\right)\right)$ on Y. Suppose ω is Poisson with mean measure σ. Then the image process is Poisson with mean measure μ if the following (sufficient only) condition is satisfied: the k-tuples $\left(\tau\left(\omega \cup\left\{t_{1}\right\}, t_{2}\right), \tau\left(\omega \cup\left\{t_{2}\right\}, t_{3}\right), \ldots, \tau\left(\omega \cup\left\{t_{k-1}\right\}, t_{k}\right), \tau\left(\omega \cup\left\{t_{k}\right\}, t_{1}\right)\right)$ and $\left(\tau\left(\omega, t_{2}\right),\left(\tau\left(\omega, t_{3}\right), \ldots,\left(\tau\left(\omega, t_{k}\right),\left(\tau\left(\omega, t_{1}\right)\right)\right.\right.\right.$ have at least one common component, for all k, all ω, and all $t_{1}, \ldots, t_{k} \in X$.
The paper is a short version of another paper by the same author, N. Privault (2010), invariance of Poisson measures under random transformations,
arXiv: 1004.2588 v 1 , where complete proofs of all results are given.

