This is a review text file submitted electronically to MR.

Reviewer: Konstantopoulos, Takis

Reviewer number: 68397

Address:

School of Mathematical & Computer Sciences Heriot-Watt University Edinburgh, EH14 4AS SCOTLAND T.Konstantopoulos@hw.ac.uk,takis@ma.hw.ac.uk

Author: Privault, Nicolas

Short title: Moment identities for Poisson-Skorohod integrals and application to measure invariance.

MR Number: 2554579

Primary classification: 60G55

Secondary classification(s):

Review text:

Let (X, σ) , (Y, μ) be two measure spaces. Consider a Poisson process on X with mean measure σ . For a function $u(\omega, x)$ of the sample configuration ω of the process and the point $x \in X$, the Skorohod integral operator maps u into the real number

$$\delta_{\sigma}(u) := \int_{X} u(\omega \setminus \{t\}, t) \ (\omega(dt) - \sigma(dt)),$$

where $\omega \setminus \{t\}$ is the configuration obtained from ω by removing the point t if the latter belongs to ω . Let R be a random isometry between the space of p-integrable functions on X and p-integral functions of Y. This paper is concerned with an expression for the moments of $\delta_{\sigma}(Rh)$ for appropriate functions h. This expression is used for the short proof of a sufficient condition for the preservation of the Poisson property under random transformations. Specifically, let $\tau(\omega, \cdot)$ be a map from X into Y such that, for each ω , the image of σ under this map is μ . We apply this map to the atoms $(x_i(\omega))$ of a point process ω on X to obtain a point process with atoms $(\tau(\omega, x_i(\omega)))$ on Y. Suppose ω is Poisson with mean measure σ . Then the image process is Poisson with mean measure μ if the following (sufficient only) condition is satisfied: the k-tuples $(\tau(\omega \cup \{t_1\}, t_2), \tau(\omega \cup \{t_2\}, t_3), \ldots, \tau(\omega \cup \{t_{k-1}\}, t_k), \tau(\omega \cup \{t_k\}, t_1))$ and $(\tau(\omega, t_2), (\tau(\omega, t_3), \ldots, (\tau(\omega, t_k), (\tau(\omega, t_1)))$ have at least one common component, for all k, all ω , and all $t_1, \ldots, t_k \in X$.

The paper is a short version of another paper by the same author, N. Privault (2010), invariance of Poisson measures under random transformations, arXiv:1004.2588v1, where complete proofs of all results are given.